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A NEW METHOD FOR IDENTIFYING AND ESTIMATING THE PARAMETERS OF THE
INSTRUMENTAL SPREADING FUNCTION IN SIZE EXCLUSION CHROMATOGRAPHY-
APPLICATION TO PARTICLE SIZE ANALYSIS.

A. Husain, A.E. Hamielec and J. Vliachopoulos

Department of Chemical Engineering
McMaster University, Hamilton, Ontario

ABSTRACT

Herein is reported a new method for identifying and estimat-~
ing the instrumental spreading function in size exclusion chroma-
tography. The method is based on the solution of the integral
equation when the size distribution of the injected standards are
known. A numerical method after Ishige et al.(l) to solve the
integral equation for the corrected distribution is suitably modi-
fied to estimate instead the spreading function when the true and
measured chromatograms are both known. The method is evaluated
for synthesized chromatograms using the particle size distribution
of Dow polystyrene latices. It is then applied to experimental
chromatograms of the latices obtained by size exclusion chromato-
graphy. The resulting spreading functions were then analysed for
variance, skewness and kurtosis.

INTRODUCTION

In size exclusion chromatography, the detector response Flv)
is related to W(y), the chromatogram corrected for peak broadening

by the integral equation,

F(v) = I w(y) a(v,y) dy (1)

-
where G(v,y) is the instrumental spreading function and both v and
y denote retention volumes. To solve equation (1) for W(y) re~
quires a knowledge of the spreading function, G(v,y). When W(y)

is composed of essentially single sized species then the measured
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chrometogram is in fact the spreading function for that species.
The statistical properties of such a function are size or reten-
tion volume dependent and hence attempts to estimate the G{(v,y)
have involved the use of narrow distribution standards. When the
standards are ultra-narrow then it is Justified to assume that
the measured chromatogram reflects the spreading characteristics
of the chromatographic columns. Most available standards are how-
ever, not sufficiently monodisperse and the identification of the
spreading function in general, requires a knowledge of the size
distribution. One exception is the reverse flow technique, pro-
posed by Tung, Moore and Knight (2); this allows an estimate of
the spreading function independent of the size distribution func-

tion of injected standards.

The reverse flow technique is based on the assumption that
when the flow is reversed the process of size separation is rever-
sed also while instrumental spreading continues to broaden the
peak. With this technique, a standard sample is allowed to flow
through half of the column length; the direction of flow is then
reversed. The resulting chromatogram reflects the spreading char-
acteristics of that half of the column. The process 1s repeated
for the other half. When a Gaussian spreading function is assumed,

2

its variance ¢“ is related to 012 and 022, the variances of the

meagured chromatograms, by the following relationship,
02 = (0,2 + 0,2)/2 (2)

A less tedious procedure (3) involves fitting the leading
edge of the chromatogram with a Gaussian function with variance,
ocz. If o2 (as determined by the reverse flow technique) and 0,2
are equal within experimental error, then it is inferred that the
leading edge of the chrometogram is monodisperse. Otherwise the
assumption of a Gaussian W(y) together with the calibration curve
information leads to an estimation of the size distribution of the
leading edge. Such information is then used for an unknown column
to estimate its spreading characteristics. This procedure assumes

that the leading edge of the chromatogram is composed of similar
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sized species irrespective of the column's resolution. This

clearly cannot be expected to hold in general.

A more direct approach and widely used, involves the use of
moment equations derivable from equation (1). The parameters of
the spreading function, either Gaussian or skewed are calculated
from a knowledge of the averages of the size distribution, typi-
cally the number and the weight average. The spreading function
generated from such estimates may not necessarily represent the
actual spreading characteristic of the column and correlations of
the spreading function parameters with retention volume must be

regarded with caution.

Recently Berger (4) nas suggested a calculation procedure

based on the simultaneous solution of equation (1) and

[=-]
c (v) = j W(y) olv »y) Ay} 6lv,y) dy (3)
-0
where Cn(v) is the chromatogram of the re-injected fraction collec-
ted at retention volume Vn. No restriction was placed on the form

of G(V,y) except that it is uniform.

In this paper we present a simple numerical procedure for es-
timating the spreading function from equation (1). It is assumed
that W(y) is known. Such information for a latex sample can be
obtained by electron microscopy. For a molecular weight sample,
obtaining the molecular weight distribution is considerably more
difficult. However, it is possible to synthesize polymers with
known molecular weight distribution functions. When a sample has
a narrow distribution, parameters of the calculated G(v,y) may be
related to the mean size. However, when the sample is broad, the
calculated G(v,y) is an effective spreading function which may be

used to calculate W(y) for an unknown sample having a similar width.

Our procedure which is similar to that of Ishige et al.(1)
for calculating W(y), is first assessed using synthesized chroma-
tograms and then applied to chromatograms of Dow polystyrene lati-

ces obtained using size exclusion chromatography.
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THEORY

Consider the chromatography of a latex sample. For a turbi-

dity detector

Wiy) « u(y) K(y) D?(y) (%)

where N and K are the number concentration and extinction coeffi-
cient respectively of a particle of size D having a mean retention

volume y. For a linear calibration curve,
D{y) = D; exp(-Day) (5)
ap{y) = -D, D(y) dy (6)

where Dj and Dy are the calibration constants. N(y) is related to

the particle size distribution f[D(y)] as follows

£o(y)] an(y) = =Myl dr (7
[Mty) ay

where F[D(y)] dD(y) is the fraction of particles in the size range
D to D + dD. The negative sign in equation (7) is due to the neg-
ative slope of the calibration curve. It follows from the above

equations that
W(y) = r[p(y)] k(y) D3(y) (8)
Substituting equation (8) in equation (1) yields

P(v) e [ £[0(y)] K(y) D3(y) Glv,y) dy (9)

-0
A discrete form of equation (9) is more suited when the function

f[D(y)] is discontinuous and is given as

Flv) = ¥ £ID(y)] K{y) D2(y) clv,y) (10)
over all D

For a molecular weight analysis using a refractive index detector,

corresponding to equation (9), one obtains

Flv) e j £(M(y)] M(y) Glv,y) dy (11)

-
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where M(y) is the molecular weight calibration curve. Extensions
of equations (9) to (11) to a nonlinear calibration curve are

straight-forward.

NUMERICAL PROCEDURE FOR CALCULATING G(v,y)

We now consider the numerical solution of equation (1) or
any of its forms, equations (9), (10) or (11). The algorithm pro-
posed is similar to that used by Ishige et al.(l) for calculating
W(y). It is assumed that the spreading function is uniform, 1i.e.
G{v,y) = ¢(v-y). Tt is therefore necessary to solve only for one

distribution function.

If one initially sets the spreading function, corresponding

toy = vp, equal to the measured chromatogram F(v), i.e.

Assumed G(V—yl)\\\t

—————> RETENTION VOLUME

Example:
G(v1 - yl) = ab = F(vp v, o~ yl)

2
<
'

[
"t

= F + -
) 5 cd (vp v, yz)

Figure 1. The initial estimate for the spreading function
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Gilv - vp) = F(v) (12)

then since the spreading function is assumed uniform, it follows

that
Gi{v - y) = F(vp + v -y) (see Fig.1) (13)

v_ is the peak retention volume of the measured chromatogram.
Equations (12) and (13) provide an excellent initial guess for the
spreading function since the chromatograms of narrow standards

largely reflect the spreading characteristics of the instrument.

Arrows indicate
the direction

of correction

—RETENTION VOLUME

Figure 2. Graphical illustration of the algorithm (Equation 1k},
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Subsequent improved estimates of the spreading function are ob-

tained as follows,

G., (v-y) =

l+1 F (V) G.(V - Y) (lh)

i

This is based on the fact that the initial estimate Gl(v—y) which

is broader than the actual G(v—y) causes the calculated chromato-

gram Fl(v) to be broader than the actual chromatogram F(v). Hence
for the calculated chromatogram to converge to the actual chroma-

togram, Gl(v—y) requires to be sharpened. The algorithm is illus-

trated in Fig.2.

The procedure in equation (14) is repeated until convergence

occurs. If

P = j | F(v) - F.(v) | av (15)

is less than a given tolerance (a tolerance of 0.0l was set in our
caleulations) or if the value P for the ith iteration exceeds the
value at the previous iteration without the tolerance being satis-~
fied, then the calculations are termineted. It is to be noted
that each new estimate of the spreading function must be normal-

ized.

EVALUATION OF THE NUMERICAIL PROCEDURE

We evaluate the procedure stated in equation (14) by synthe-
sizing F(v) using an assumed spreading function and an assumed
W(y). The spreading function was either a Gaussian or a skewed
function obtained by setting all coefficients except A, equal to
zero in the statistical shape function proposed by Provder and
Rosen (5) (see equation 16). To calculate W(y), electron micro-
scopy data of Dow polystyrene latices were used and the extinction
coefficients were calculated using either Rayleigh or Mie theory.
The results are presented in Figs.3A-H where the estimated G(v-y)

is compared with the actual function.
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85 nm sample
D(v) = 268L exp(-.05968v)
= 0.5 (Gaussian)
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85 nm sample
D(v) = 2684 exp(-.05968v)
02= 0.5, A3 = 1 (skewed)
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Figure 3 {Continued).
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85 nm sample
D(v) = 2684 exp(-.05968v)
02 = 4.0, A3 = 1 (skewed)
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----- G(v,vp) ASSUMED
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Figure 3 (Continued).
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Figure 3 (Continued).



18: 45 24 January 2011

Downl oaded At:

470 HUSAIN, HAMIELEC, AND VLACHOPOULOS

GH
-
o
D
=]
=]

sample

D(v) = 268k exp{-.05968v)

—

L.
—
—

5 02 = 1.0, A3 = 1 (skewed)
G e -
T 1.0 - -
=
Tl 0.9
B
P
0.96
o
N

F(v) RAYIEICGH

————— G(v,vp) ASSUMED
o G(v,vp) RECOVERED
Numbers indicate ratio of

assumed to recovered
Glv,v )
P

L8 50 52 54 56 58 60
RETENTION VOLUME, v

Figure 3 (Continued).
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176 nm sample
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Figure 3 (Continued).
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Figure 3 (Continued).
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Figure 3 (Continued).
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The values of the parameter 0? used in the computations span
a wide range with a value of 0.5 m12 being representative of
columns used in hydrodynamic chromatography while larger values
are encountered in size exclusion chromatography. Significant
skewing is introduced by setting A3 = 1.0. Tt is evident from
the results that the calculated spreading functions compare very
favourably with the assumed functions over the entire range of

retention volumes.

Also shown in the plots are the ratios of the chromatogram
heights calculated according to Mie theory to those according to
Rayleigh theory. These indicate a rather low sensitivity of the

calculated chromatograms to the light scattering theory applied.

ESTIMATION OF THE SPREADING FUNCTIONS FROM EXPERIMENTAL
CHROMATOGRAMS

Having established the validity of the numerical procedure
for estimating the spreading function, the method was applied to
experimental chromatograms of a number of Dow polystyrene latices
obtained by size exelusion chromatography. The data were meas-
ured at a wavelength of 254 nm. Mie theory was assumed valid.
Errors resulting from this assumption (6) are likely to be insig-
nificant due to the previously noted observation that the calcu-
lated F(v) are relatively insensitive to the light scattering

theory applied.

The measured chromatograms and the corresponding estimated
spreading functions are shown in Figs.L4A-D. For the 220 nm
sample the estimated spreading function did not differ markedly
from the experimental chromatogram and hence this result is not

graphed.

In size exclusion chromatography of polymer molecules, a
statistical shape function proposed by Provder and Rosen (5) is
frequently used to represent instrumental spreading. It is of
interest to examine the fit of the spreading function data to

this shape function. We first present a brief discussion of the
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85 nm SAMPLE
D(v) = 3028.4 exp(-0.1707 v)

Estimated

\\/ G(v—vp)

|

Figure L.

18 20 20 )N 26 28 20
RETENTION VOLUME, v

Estimation of the spreading functions from experimental
chromatograms.
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109 nm SAMPLE
D = 3028.4 exp(-0.1707Tv)

Estimated
Glv-v_)
1Y

-l |

20 22 24 26 28 30
RETENTION VOLUME, v

Figure 4 (Continued).
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176 nm sample
D = 3028.h4 exp(-.1707v)

\ Estimated
Glv-v_)
P

20 22
RETENTION VOLUME, v

Figure 4 (Continued).
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312 nm sample
D = 3028.L exp(-0.1707v)

RETENTION VOLUME, v

Figure 4 (Continued).
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latter. The shape function is given by,

© A
Glv=y) = Golv=y) |1+ [ =% H (x) (16)
. n=3 7
where
- 1 : (V-x)?‘
Go(v-y) = exp |- (17)
omo?2 . 202
and
R (18)

Hn(x) are the Hermite polynomials, 02 is the second moment of the
spreading function about the mean retention volume y and the co-
efficients An are functions of the nth order moments, un of the
spreading function about the retention volume y. The first two

coefficients are of direct statistical significance and are given

as,

3

Ay = Ty (19)
H2
u
L

Ay = — -3 (20)
H2

The coefficient A3 provides an absolute statistical measure of
skewness while Ay is a measure of the flattening or kurtosis of

the spreading function.

A special case of equation (16) is called the Edgeworth ser-
ies and is obtained when Ag = lOA32 and A, = 0 forn 2 7. Ina
subsequent paper, we develop an analytical solution to equation
(1) (as applied to particle chromatography) using the Edgeworth
series. Therefore we examine the fit of the spreading function
data to this series rather than considering additional terms in

equation (16).

Figure 5 illustrates the fit obtained for the 85 nm sample,
The central portion is adequately represented while the low and

high retention volume ends are respectively underestimated and
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TABLE 1

Fit of the Spreading Function Data by the Edgworth Series.
(GE/GF denotes the ratio of the estimated G(v-y) to the fitted

Glv=-y))
Span of the lower Span of the central Span of the high
Samle retention volume portion of the retention volume
P end where spreading function end where
Gg/Gp > 1.1 where 0.9<Gp/Gp<l.l  Gg/Gp < 0.9
(Z) (2)
85 L1 79.6 16.3
109 6.2 73.0 21.8
176 12.4 66.2 21.4
220 10.3 70.0 19.7

overestimated, The fits for 109, 176 and 220 nm samples were
similar, wvhile that for the 312 nm sample was rather poor. Table

1 summarises the results of the fitting.

The values of 02, Ay and A, for the spreading functions are
given in Table 2. A similar trend is observed for all three en-
tities, i.e. they indicate an optimum with retention volume. The
trend indicated may be fortulitous since the data is rather limited.
However, the method suggested in this paper can form the basis of
a systematic investigation of the variation of these parameters

with retention volume under a wide range of operating conditions.

TABLE 2
Parameters of the Statistical Shape Function
Peak
Sample Retention Variance Skewness Kurtosis
Volume g2 Aj Ay
85 21.02 5.13 0.396 -0.0992
109 19.70 5.62 0.509 -0.0137
176 17.00 5.3h 0.737 0.4830

220 15.35 3.58 0.716 0.0930
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Tt should be stressed that the o2, A3 and Ay values calc¢ulated in
the manner shown represent the actual second moment, skewness and
kurtosis of the spreading function rather than manipulated para-
meters such as are obtained when searching for their valués with

the help of moment equations.

CONCLUSIONS

A numerical method has been developed and evaluated to esti-
mate the instrumental spreading function in size exclusion chro-
matography. It requires the size distribution information of the
injected standards. Such information can be obtained forvparticle
standards by electron-microscopy. The numerical technique per-
forms satisfactorily and is simple to apply. ©No restriction is
placed on the form of the spreading function except that it be

uniform.

A Gaussian function or the statistical shape function are
frequently used to represent instrumental spreading. The calcu-
lated spreading function data allows an independent assessment of
the adequacy of functions assumed to describe them. Also it en-

ables their parameters to be estimated unambiguously.
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